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Abstract

Soil salinization affects crop production and food security. Mapping spatial distribution

and severity of salinity is essential for agricultural management and development. This

study was aimed to test the effectiveness of machine learning algorithms for soil

salinity mapping taking the Mussaib area in Central Mesopotamia as an example.

A combined dataset consisting of Landsat 5 Thematic Mapper (TM) and ALOS L‐band

radar data acquired at the same time was used for fulfilling the task. Relevant

biophysical indicators were derived from the TM images, and the soil component was

retrieved by removing the vegetation contribution from the L‐band radar backscattering

coefficients. Field‐measured salinity at the three corner plots of triangles were averaged

to represent the salinity of these triangular areas. These averaged plots were converted

into raster by either direct rasterization or buffering‐based rasterization into different cell

size to create the training set (TS). One of the three triangle corners was randomly

selected to constitute a validation set (VS). Using this TS, the support vector regression

(SVR) and random forest regression (RFR) algorithms were then applied to the combined

dataset for salinity prediction. Results revealed that RFR performed better than SVRwith

higher accuracy (93.4–94.2% vs. 85.2–89.4%) and less normalized root mean square

error (NRMSE; 6.10–7.69% vs. 10.29–10.52%) when calibrated with both TS and VS.

In comparison, prediction by multivariate linear regression (MLR) achieved in our

previous study using the same datasets also showed less NRMSE than SVR. Hence, both

RFR and MLR are recommended for soil salinity mapping.
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1 | INTRODUCTION

Soil salinization is one of the most active land degradations and

environmental hazards in irrigated lands worldwide, especially, in dry

areas (Farifteh, Farshad, & George, 2006; Metternicht & Zinck, 2003),
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Zinck, 2003) and 50–51% in Uzbekistan (Ivushkin et al., 2017; Qadir

et al., 2009). Salinity has greatly influenced crop production, which has

declined, for example, by 30–60% in comparison with that in the

nonaffected croplands in Mesopotamia, Iraq (Wu, Al‐Shafie, et al.,

2014). Therefore, it is of prime importance to investigate the severity

and distribution of soil salinity in space and time to support decision

makers in planning agriculture development to mitigate food security

issues in the salt‐affected countries.

In the past decades, a great number of remote sensing (RS)‐based soil

salinity mapping studies have been conducted (Allbed & Kumar, 2013;

Bannari, El‐Battay, Bannari, & Rhinane, 2018; Dwivedi & Rao, 1992;

Farifteh et al., 2006; Fernández‐Buces, Siebe, Cram, & Palacio, 2006;

Gorji, Tanik, & Sertel, 2015; Ivushkin et al., 2017; Mougenot, Pouget, &

Epema, 1993; Wu, Al‐Shafie, et al., 2014; Wu, Mhaimeed, et al., 2014).

These studies have not only identified the relevant salinity indicators,

for example, different vegetation indices, combined spectral response

index, principal components, and land surface temperature (LST), but also

proposed operational approaches such as best band combination and

multiyear maxima‐based multivariate regression modeling.

Several authors have explored the possibility to detect soil salinity

by microwave radar data as they are independent of weather condition

(Gong, Shao, Brisco, Hu, & Tian, 2013; Sreenivas, Venkataratnam, &

Rao, 1995). The laboratory‐based simulations conducted by these

authors suggested that it is possible to use the microwave P, C, and

especially L bands for detecting salinity in different settings because

the signal can penetrate through the surface and reach the subsoil to a

depth of up to 150 cm or more, depending on the wavelength/frequency

of the emitted waves and soil moisture. However, satisfactory

radar‐based salinity mapping has been rarely reported probably due to

the difficulty to separate the soil salinity from the moisture within the

radar backscattering coefficients. Wu, Muhaimeed, Al‐Shafie, and Fadhil

(in press) employed the leaf area index (LAI) and vegetation water

content (VWC) derived from the optical data to remove the effects of

vegetation cover on the backscattering coefficients of soil and found that

these corrected backscattering coefficients were highly correlated with

the measured soil salinity (R2 = 0.565–0.677).

Recently, a strong momentum has been gained in RS‐based land

cover mapping including extraction of saline land by machine learning

classifiers such as artificial neural network (ANN), support vector

machines (SVMs), and random forests (RFs; Belgiu&Dragut, 2016;Huang,

Davis, & Townshend, 2002; Kavzoglu & Colkesen, 2009; Ritter & Hepner,

1990; Rodriguez‐Galiano, Ghimire, Rogan, Chica‐Olmo, & Rigol‐Sanchez,

2012; Wu, Zucca, Karam, & Liu, 2016). The advantage of these

algorithms over the traditional parametric classifiers lies in their capacity

to separate nonparametric signatures by determining the hyperplane in a

high‐dimensional space or by growing ensembles of decision trees and

letting them vote for the most popular class (Breiman, 2001) making the

nonseparable clusters in the parametric space separable (Wu et al.,

2016). Comparing the most frequently applied and promising machine

learning algorithms, Wilkinson (2005), Mas and Flores (2008), and Wu

et al. (2016) found that ANN was often outperformed by other classifiers

such as SVM and RF, and even bymaximum likelihood. Pal (2005) andWu

et al. (2016) noted that SVM and RF could achieve equally well land cover

mapping with a very high accuracy of 95.7–96.8% for local sites though

they took much longer processing times than maximum likelihood.
Recently, Abdel‐Rahman, Ahmed, and Ismail (2013), Wang, Zhou,

Zhu, Dong, and Guo (2016), and so forth applied the random forest

regression (RFR) to biophysical prediction such as leaf nitrogen con-

centration and biomass estimation. Farifteh, van der Meer, Atzberger,

and Carranza (2007) used partial least squares regression and ANN,

and Taghizadeh‐Mehrjardi, Minasny, Sarmadian, and Malone (2014)

employed regression tree to predict pixel‐based soil salinity. This

aroused our strong interest to explore the possibility to use the

hotspotted machine learning regression algorithms, RFR, and support

vector regression (SVR) for predicting and mapping soil salinity.

Actually, application of SVR and RFR for RS‐based soil salinity

prediction and mapping has been rarely reported. For this reason,

the main objective of our study was to ascertain the applicability of

these machine learning regression algorithms for such purpose. One

specific objective was to compare their performance (mapping accu-

racy and reliability) with that of multivariate linear regression (MLR)

using the same dataset (a single date of optical and radar dataset) used

by Wu et al. (in press). The research was implemented in the Mussaib

site in Central Mesopotamia.
2 | METHODS AND MATERIAL

2.1 | Study area

The study area is located in between theTigris and the Euphrates Rivers

in Central Mesopotamia, Iraq (Figure 1), where the main land use is

croplands. This area has been a national agriculture development project

site since 1950s for grain production including irrigatedwheat and barley

in spring and corn, vegetables, and fruits in summer. Perennial alfalfa and

permanent tree crop such as date palm are also locally cultivated.

Long‐term fallows or abandoned croplands (uncultivated in the past

15–20 years) and unmanaged bare lands exist, and built‐up areas are very

local. The total area of the project site is around 250,000 ha. The

dominant soil types are Aridisols and Entisols with texture class ranging

from silt clay loam to silty loam with more than 20% of lime. The soils

are mostly saline with electrical conductivity (ECe) ranging from 4 (low)

to 30 (strong) dS m−1 (Wu et al., in press; Wu, Al‐Shafie, et al., 2014).

Climatically, theMussaib site is characterized by short cool winter and

long hot summer. Rainfall is concentrated in winter and early spring from

December to March with an annual average of about 82.5 mm during the

past 60 years (recorded in the adjacent stationHillah). Themeanminimum

temperature is about 6.25°C in December–February, whereas the mean

maximum temperature is around 43.2°C in July–August.

As a part of theMesopotamian Plain, the landform of the study area

is mostly flat with elevation varying from 25 to 31 m above sea level.
2.2 | Data

2.2.1 | Field data

Field surveyswere conducted from July 2011 to July 2012 including soil

sampling (July–November 2011), apparent electrical conductivity (ECa

in millisiemens per meter or mS m−1) measurements by EM38‐MK2

(Geonics Ltd.; EM38 hereafter) in March–July 2012 and June 2013.

Soil samples were taken from 13 pedons (0‐ to 30‐cm horizon of

the profiles up to 150 cm in depth) and 17 auger holes of 0–30 cm in



FIGURE 1 Location of the study area and distribution of the field sampling points [Colour figure can be viewed at wileyonlinelibrary.com]
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depth in the study area in July–November 2011, when EM38 instru-

ments were not available. The soil samples were analyzed in labora-

tory to measure soil electrical conductivity (ECe; 1:1 dilution

method). Samples were taken mainly in croplands or under halophytes,

which are normally problematic for soil salinity mapping by RS

(Metternicht & Zinck, 2003).

After the arrival of the instruments, EM38 readings were con-

ducted in three campaigns, in spring (March–April) 2012, with 45

(3 × 15) pairs of vertical (V) and horizontal (H) readings, and early sum-

mer (June–July 2012, when dry season started after harvesting wheat

and barley), with 21 (3 × 7) pairs of V and H readings as supplementary

sampling. V and H EM38 readings (EMV and EMH) were taken in small

plots (1 m × 1 m in size) distributed at the three corners of triangles.

The designed distance of any two corners of a triangle was about

15–20 m to ensure that the triangle could approximately represent

one Thematic Mapper (TM) pixel. However, due to accessibility prob-

lem in field, EM38 readings could not be measured at the same points

as soil samples, and it was also difficult to control the sampling trian-

gles as equilateral, and their actual side lengths ranged between 25

and 52 m, so that the triangles covered an area of about 470–

920 m2. The averaged EMH and EMV of the three pairs of readings

were considered as the representative values of the observed triangu-

lar areas or, rather, of the corresponding TM pixels. Two additional tri-

angles (3 × 2 pairs) of measurements surveyed near the site in June

2013 were also integrated in this study. Hence, totally 24 averaged

pairs of EM38 readings including EMV and EMH were used as

ground‐truth training set (TS) for this study.

For validation purpose, any one pair of the three triangle corners

was selected to compose a ground‐truth validation set (VS), which was

slightly different in both EMV and EMH readings and spatial locations

from their averaged TS. The VS also contains 24 pairs of samples as

above. As for land use/cover‐related distribution, five of these samples

were located in the long‐term fallows or abandoned croplands, three in

bare lands, and the remained ones in mixed croplands including alfalfa.
The lab‐analyzed soil samples were used neither for calibrating

the above EM38 readings nor for model training because of different

locations from the EM38 sampling points (Figure 1) and could not rep-

resent the salinity of the TM pixels due to high spatial variability of

salinity. Thus, these soil samples were only used for verification of

the classified grades of salinity (ECe) converted from the predicted

ECa (see Section 2.3.7 for detail).

2.2.2 | Satellite data

Level 1.5 product of PALSAR data of the Japanese ALOS satellite with

a spatial resolution of 12.5 m were obtained from the European Space

Agency (https://alos‐palsar‐ds.eo.esa.int). The L‐band images were

produced by a microwave radar sensor with a wavelength of 23 cm

and frequency of 1.27 GHz in Fine Beam Double polarization mode

(HH/HV). The images were acquired with an off‐nadir angle of 34.3°

and an incidence angle of 7.5–60° on November 26, 2010, when sum-

mer crops, mainly maize, became mature and winter wheat and barley

were to be sown. Rainy season had not yet started in the study area.

Landsat 5 TM images dated November 23, 2010, acquired almost

on the same date as ALOS images, were also obtained from European

Space Agency (https://landsat‐ds.eo.esa.int).

It is noted that in the surrounding weather stations of the study

area, namely, Baghdad, Karbala, Diwaniyah, and Hillah, no rainfall

was recorded in the period from May to November 2010 (https://fr.

tutiempo.net/climat/iraq.html). Thus, rainfall‐induced moisture prob-

lem (Wu, Al‐Shafie, et al., 2014; Wu, Mhaimeed, et al., 2014) could

be avoided in our analysis.

2.3 | Approaches and processing procedures

2.3.1 | TM image processing

The Landsat 5 TM images were radiometrically calibrated, and a

FLAASH (Fast Line‐of‐sight Atmospheric Analysis of Spectral Hyper-

cubes) model (Perkins et al., 2012) was applied to remove the additive

https://alos-palsar-ds.eo.esa.int
https://landsat-ds.eo.esa.int
https://fr.tutiempo.net/climat/iraq.html
https://fr.tutiempo.net/climat/iraq.html
http://wileyonlinelibrary.com
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atmospheric effects. The produced reflectance was rescaled to 0–1

for each band.

Biophysical indicators recognized in our previous studies as most

relevant for salinity mapping (Wu, Al‐Shafie, et al., 2014; Wu,

Mhaimeed, et al., 2014) were produced. They were the normalized dif-

ference vegetation index (NDVI), the normalized difference infrared

index (NDII; Hardisky, Klemas, & Smart, 1983) from TM bands 4 and

5, the generalized difference vegetation index (GDVI; Wu, 2014) with

power number of 2 and 3 (denoted, respectively, GDVI2 and GDVI3),

the LST from the thermal band, and theTasseled Cap brightness (Crist

& Cicone, 1984).

2.3.2 | L‐band radar processing

The Level 1.5 radar product has been geometrically corrected, and

pixels resampled to 12.5 m in size to rectify deformation by the pro-

vider. The digital number (DN) of the two HH and HV bands were,

respectively, calibrated and converted into backscattering coefficients

(σ0
HH and σ0

HV), expressed in decibel (dB) following Shimada, Isoguchi,

Tadono, and Isono (2009):

σ0 dB½ � ¼ 10 log10 DNð Þ2 − 83:0: (1)

An enhanced Lee filter (3 × 3 in size; Lee, 1980) was then applied to

remove speckles or noises. σ0
HH and σ0

HV were hence derived and

resampled to 30 m pixels to match the TM data.

2.3.3 | Removal of the influence of vegetation cover

As mentioned above, the difficulty to use backscattering coefficients

to characterize soil salinity is related to the effects of soil moisture,

especially, where vegetation cover is present. Attema and Ulaby

(1978) have proposed the water cloud model for characterizing the

effect of VWC on radar backscattering coefficient, which can be

expressed as follows (Kumar, Prasad, & Arora, 2012; Moran, Vidal,

Troufleau, Inoue, & Mitchell, 1998):

σ0 ¼ σ0
veg þ L2σ0

soil; (2)

with

σ0
veg ¼ AV1 cos θið Þ 1 − L2

� �
; (3)

L2 ¼ exp −2BV2 sec θið Þð Þ; (4)

σ0
soil ¼ σ0 − σ0

veg

� �
=L2; (5)

where σ0 is the total backscattering coefficient from both vegetation

canopy and soil (either σ0
HH or σ0

HV in our case), σ0
veg is the backscatter-

ing contribution of the vegetation cover, and σ0
soil is that of soil; L2 is

the two‐way vegetation attenuation; θi is the incidence angle of the

radar beam; A and B are the vegetation parameters; and V1 and V2

are the vegetation descriptors. Kumar et al. (2012) applied LAI (m2 m
−2) for V1 and VWC (kg m−2) for V2, respectively.

After numerous fittings, the LAI‐GDVI2 model of Wu (2014), was

found to perform better than other LAI‐NDVI models given the same

VWC (V2), A, and B parameters. This model is shown as follows:
LAI ¼ 0:091exp 3:7579GDVI2ð Þ R2 ¼ 0:932
� �

: (6)

Using this LAI model, vegetation‐removed backscattering coefficient,

σ0
soil, was better correlated to the field‐measured apparent soil salinity.

It was hence adopted for this study.

Similarly, we selected the VWC‐NDVI model developed by Jack-

son et al. (2004) for maize for our analysis, that is,

VWC ¼ 192:64NDVI5 − 417:46NDVI4 þ 347:96NDVI3

− 138:93NDVI2 þ 30:699NDVI

− 2:822 kg m−2
� �

R2 ¼ 0:990
� �

;

(7)

which outperformed other VWC‐NDII and VWC‐NDVI models given

the same LAI, A, and B.

As for A and B, those obtained by Dabrowska‐Zielinska, Inoue,

Kowalik, and Gruszczynska (2007) for ALOS L‐band radar data were

tested in this study. We found that the second case of L band, that

is, A = 0.0045 and B = 0.4179, could maximize the correlation

between the vegetation‐removed backscattering coefficient ( σ0
soil)

and the field‐measured salinity given the same LAI and VWC. This pair

of A and B was finally selected for our study.

Inputting the selected A, B, LAI, and VWC models, and 34.3° as

the mean incidence angle, the vegetation‐removed backscattering

coefficients (σ0
HH soilð Þ and σ0

HV soilð Þ) were obtained. This removal proce-

dure gained an increase of 16.6–25.6% in the correlation coefficient of

σ0
HH soilð Þ with the field‐measured salinity in respect to that of σ0

HH and

11.5–21.4% in that of σ0
HV soilð Þ in comparison with σ0

HV (Wu et al., in

press).

2.3.4 | Combined dataset

The produced NDVI, GDVI2, GDVI3, NDII, LST, Tasseled Cap bright-

ness, σ0
HH, σ

0
HV, σ

0
HHþHV, σ

0
HH soilð Þ, σ

0
HV soilð Þ, and their sum σ0

HHþHV soilð Þ

were stacked together to compose an optical–radar combined 12‐

band dataset.

2.3.5 | Rasterization of the field measurements

To model salinity using machine learning regression, it is essential to

create a TS based on the field measurements, that is, to rasterize the

field plots. Two kinds of rasterization were conducted. One was a

direct rasterization, that is, using Point to Raster conversion tool

within ArcGIS to convert the averaged field measurement plots into

raster cells of 30, 60, and 90 m in size and then resampled to 30‐m

pixels. The other was to first use a buffering function to convert the

averaged field points into circular buffers with a radius of 30, 60,

and 90 m and then apply a Feature to Raster function to convert these

buffers into raster with an initial cell size of 10 m to catch the buffer

forms; and at last, these cells were resampled to 30‐m pixels to match

the combined dataset.

The objective to rasterize sample plots into such different extents

(30, 60, and 90 m) was to find the optimal spatial presentation of sam-

ples for machine learning regression modeling taking both the repre-

sentativeness of samples and spatial variability of salinity into account.
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2.3.6 | Application of SVR and RFR for salinity
prediction

Both SVR and RFR modeling were conducted within EnMap‐Box

(Waske et al., 2012; van der Linden et al., 2014), an image processing

and analysis package designed by IDL (Interactive Data Language).

Support vector regression

SVR (Vapnik, Golowich, & Smola, 1997) is a learning regression algo-

rithm extended from the SVM (Vapnik & Lerner, 1963). The strength

of SVR is to model the complex nonlinear relationships in the multidi-

mensional or hyperdimensional feature space and estimate the linear

dependency of the variables to be predicted on the predictive covari-

ates by fitting an optimal approximating hyperplane to the training

data. For linearly nonapproximable problems, the training data are

implicitly mapped by a kernel function with regularization into a higher

dimensional space, wherein the new data distribution enables a better

fitting of a linear hyperplane that appears nonlinear in the original fea-

ture space (van der Linden et al., 2014).

While executing SVR modeling, the parameterization is a critical

procedure that requires the user to select the parameter(s) of the ker-

nel function (γ) as well as the regularization (C) and the loss function

(ε). As many researchers have underlined (Huang et al., 2002; Kavzoglu

& Colkesen, 2009; van der Linden et al., 2014; Wu et al., 2016), radial

basis function can capture best the nonparametric features. Hence,

radial basis function including linear kernel was selected. And the

default values were chosen for the other parameters such as C (min

0.01 and max 1,000) with a multiplier 10, three folds of cross‐valida-

tion, and automatic search for ε.

After training, the derived SVR models were applied back to the

combined dataset to produce the apparent soil salinity (ECa) maps.

Random forest regression

RFR is formed by an ensemble of growing decision trees depending on

randomvectors and beginswithmany bootstrap samples that are drawn

randomly with replacement from the original training dataset (Breiman,

2001). A key procedure in RFR is to use Bagging (BootstrapAggregating)

in tandem with random feature selection, as Bagging can dramatically

reduce the variance of unstable procedures such as tree growing, lead-

ing to an improved prediction and enhanced accuracy (Breiman, 2001).

More concretely, a regression tree is fitted to each of the bootstrap

samples from theTS, or rather, random vectors, that govern the growth

of each tree in the ensemble to grow regression forests. In these forests,

random feature selection at each node to determine the split criteria is

on top of Bagging. Therefore, the generalization error can be provided

by out‐of‐bag estimation, which can be also used to estimate the impor-

tance of each variable. RFRhas no overfitting problembecause it applies

the strong law of large numbers as RF. The more features used, the less

error produced (Breiman, 2001).

While conducting RFR modeling, we kept all 12 bands as input

variables with 24 observations (samples for training, TS). Some critical

parameters to be set were first the number of trees (NT) depending on

the complexity of the features. The default value was 100 within

EnMap‐Box, but tests were also conducted by setting it to 300, 500,

and 1,000 in view of the spatial variability of salinity. The second

one was the number of randomly selected features (or number of
variables) at each node, which can be the square root of all features

or logarithm (log) of all features or a user‐defined value. In this analy-

sis, the square root of all features was selected. The third one was the

stop criteria (for node splitting), where the default values of the mini-

mum number of samples in a node, 1, and the minimum impurity cal-

culated based on Gini index, 0, were chosen.

After parametrization using the rasterized EMV or EMH as TS, the

produced RFR models were applied back to the combined dataset to

predict the apparent soil salinity (ECa).

2.3.7 | Conversion from ECa to ECe

Since what SVR and RFR had predicted was the apparent soil salinity

(mS m−1), it had to be converted into the lab‐measured ECe (dS m−1),

which would be more meaningful for land management. We applied

hence our results obtained from the regional‐scale sampling and lab

analysis in the whole Mesopotamia for this purpose. Regional sampling

includes two transects and four pilot sites, where both soil and EM38

readings were sampled at the same plots. The ECe–EM38 readings

(ECa) relationships were expressed as follows (Wu, Al‐Shafie, et al.,

2014; Wu, Mhaimeed, et al., 2014):

ECe dS m−1
� � ¼ 0:0005EMV

2 − 0:0779EMV

þ 12:655 R2 ¼ 0:850
� �

;
(8)

ECe dS m−1
� � ¼ 0:0002EMH

2 þ 0:0956EMH

þ 0:0688 R2 ¼ 0:791
� �

:
(9)

2.3.8 | Verification and reliability analysis

The predicted salinity by both SVR and RFR modeling was calibrated

against both the TS and VS to evaluate their performance at each test

of the given conditions (e.g., rasterization type and NT), either by lin-

ear regression analysis using R2 or by the root mean square error

(RMSE) and the normalized RMSE (NRMSE), which can shed light on

the goodness of fit between the prediction and measurement. Mathe-

matically, the latter can be expressed as

RMSE ¼ Σn
i¼1

bSi−Si� �2
� �

=n

� 	1=2
; (10)

NRMSE ¼ RMSE
Smax − Smin

; (11)

where bSi is the ith predicted soil salinity, Si is the ith measured salinity,

and n is the sample number of the observed dataset, 24 in this case;

Smax and Smin are, respectively, the maximum and minimum values of

the measured salinity. NRMSE is a unitless index; the lower the value,

the better the fit.

In addition, the converted salinity of the typical land use types in

the study area such as alfalfa, mixed croplands, long‐term fallows, and

bare saline soil and built‐up area were also sampled through definition

of their corresponding polygons to check the reliability of prediction.
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3 | RESULTS AND DISCUSSION

3.1 | Effects of rasterization procedure

3.1.1 | Effects of buffering field samples

As revealed in Tables 1 and 2, the buffering‐based rasterization

produced better modeling results (i.e., higher R2) for both RFR

and SVR algorithms (Table 2) than the direct rasterization

(Table 1) when calibrated against the ground‐truth TS and VS. This

is because the direct rasterization (Figure 2a,c) resulted in irrational

presentation of the training sample plots in space (small pink

plots were not enclosed in the centers after rasterization), and

the buffering‐based rasterized pixels were able to envelop better

the sampling plots, and hence more spatially representative

(Figure 2b,d).
FIGURE 2 Difference between the direct rasterization (a,c) and
buffering‐based rasterization (b,d) of the field averaged sample plots
2 and 11 (the smallest pink squares). (a,c) With initial rasterized cells of
30 (blue), 60 (green), and 90 m (brown); (b,d) first into circular buffers
of a radius of 30, 60, and 90 m to which the same colors as the former
were assigned and then were finally resampled to 30‐m pixels [Colour
figure can be viewed at wileyonlinelibrary.com]
3.1.2 | Effect of rasterization cell size

Different rasterization of cell sizes led to a different performance of

salinity prediction (Tables 1 and 2). As shown in Figure 2a,c, the

original sample plots were distributed on the borders or close to

the borders of the rasterized cells of 30, 60, and 90 m, indicating

a poor representation of the samples after direct rasterization. For

the buffering‐based rasterization, sample plots (Figure 3b,d) were

fully encompassed inside the resampled pixels, which could repre-

sent well the sample plots leading to a relevant salinity prediction,

that is, generally high R2 in Table 2. As for RFR, both circular

buffers with radius of 30 and 60 m produced equally good predic-

tion, better than that of 90 m (Tables 2 and 3). Probably in the lat-

ter case, the buffer size was too large (about 2.5 ha in area) and

hence shaded the spatial variability of salinity. In case of SVR, the

buffer cell with a radius of 60 m outperformed the other two

cases. Overall, a 60 m of initial buffer size will be recommended

for both RFR and SVR modeling.
TABLE 1 Agreement (R2) between the predicted soil salinity (EMH) and f
samples for training (RFR was run by setting the number of trees [NT] to

Salinity prediction RFR predicted soil salinity (EMH)

Initial rasterized cell (m) 30 60

Resampled pixel (m) 30 30

R2 against training set (TS; EMH) 0.4904 0.7238

R2 against validation set (VS; EMH) 0.4889 0.7147

Note. RFR: random forest regression; SVR: support vector regression.

TABLE 2 Agreement (R2) between the predicted soil salinity (EMH) and f
rasterization of the field samples (RFR was run by setting the number of t

Salinity prediction RFR predicted salinity (EMH)

Buffer size (radius in m) 30 60

Initial rasterized cell (m) 10 10

Resampled pixel (m) 30 30

R2 against TS (EMH) 0.9206 0.9283

R2 against VS (EMH) 0.9285 0.9075

Note. RFR: random forest regression; SVR: support vector regression; TS: train
3.1.3 | NT with RFR

The NT affected the prediction results when applying RFR algorithm

(Table 3). Despite its capacity to capture most of the features when

NT was set to 100, the prediction results (R2) were better when it

was set to 300 and 500 for buffers with a radius of both 30 and

60 m, and R2 slightly decreased when it was 1000. Hence, 300 or

500 is recommended for NT when dealing with salinity mapping in

general case.
ield‐measured salinity (EMH) with direct rasterization of the field
100)

SVR predicted soil salinity (EMH)

90 30 60 90

30 30 30 30

0.7922 0.6529 0.8007 0.8009

0.7812 0.6500 0.7905 0.7795

ield‐measured salinity (EMH) resulted from the buffering‐based
rees [NT] to 100)

SVR predicted salinity (EMH)

90 30 60 90

10 10 10 10

30 30 30 30

0.8727 0.8353 0.8606 0.7903

0.8590 0.8493 0.8888 0.8102

ing set; VS: validation set.
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FIGURE 3 Soil salinity maps of the study area predicted by different regression algorithms and converted into ECe (dS m−1) [Colour figure can be
viewed at wileyonlinelibrary.com]

TABLE 3 Agreement (R2) between the RFR predicted salinity (EMH)
and field‐measured one (EMH) given the different numbers of trees
(NT) when buffering‐based rasterization was conducted

Number
of trees

Rasterization
and calibration

Predicted EMH vs.
measured EMH

Buffer size (radius in m) 30 60 90
Initial rasterized cell (m) 10 10 10
Resampled pixel (m) 30 30 30

100 R2 against TS (EMH) 0.9206 0.9283 0.8727
R2 against VS (EMH) 0.9285 0.9075 0.8590

300 R2 against TS (EMH) 0.9325 0.9235 0.8700
R2 against VS (EMH) 0.9432 0.9019 0.8546

500 R2 against TS (EMH) 0.9349 0.9331 0.8867
R2 against VS (EMH) 0.9416 0.9141 0.8697

1000 R2 against TS (EMH) 0.9246 0.9189 0.8802
R2 against VS (EMH) 0.9352 0.8978 0.8639

Note. RFR: random forest regression; TS: training set; VS: validation set.
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3.1.4 | Prediction from EMV

As seen inTable 4, the predictivity of soil salinity by RFR and SVR with

EMV seems slightly lower than that with EMH (Tables 2 and 3) given

the same buffering‐based rasterization procedure. Table 4 also indi-

cated that rasterization with 60‐m buffering procedure delivered the

best prediction for both RFR and SVR algorithms when EMV dataset

was used as TS.
3.2 | Soil salinity maps and their reliability

3.2.1 | Salinity maps

The best predicted apparent soil salinity maps by RFR on EMH (e.g.,

NT = 500, buffer size = 30 m; Table 3) and by SVR on EMV (buffer

size = 60 m; Table 4), and those by MLR on EMH were converted into

ECe (dS m−1). They were presented in Figure 3 either in continuous

ramp (Figure 3a–c) or classified severity grades (Figure 3a′–c′), respec-

tively, by MLR, RFR, and SVR.

Although performing differently in different land use types, RFR

estimated salinity was closer to the field‐measured ones than SVR

in built‐up areas and alfalfa cropland in the defined polygons

(Figure 3a–c and the mean values in Table 5). Theoretically, the salin-

ity should be zero in the built‐up areas and very low in the vigorously

performing croplands (e.g., <4–8 dS m−1), including the salt‐tolerant

crops such as alfalfa. SVR seemed to have overestimated salinity in

these two types of land use (Table 5). In comparison with RFR and

SVR, salinity predicted by MLR is also close to the measured ones

for these two land use categories.

For mixed croplands, all three algorithms predicted reasonably

well salinity when compared with measured ECe (Table 5).

Regarding the long‐term fallows including the abandoned crop-

lands, uncultivated during the past 15–20 years, the three algorithms

performed equally well, 31.9–37.9 dS m−1, approximate to the field‐

http://wileyonlinelibrary.com


TABLE 4 Performance of RFR and SVR in salinity prediction with different buffer size rasterization

RFR predicted salinity (EMV) SVR predicted salinity (EMV)

Buffer size (radius in m) 30 60 90 30 60 90

Initial rasterized cell (m) 10 10 10 10 10 10

Resampled pixel (m) 30 30 30 30 30 30

R2 against TS (EMV) 0.8807 0.9360 0.8516 0.7848 0.8943 0.7683

R2 against VS (EMV) 0.8860 0.8937 0.8131 0.7280 0.8525 0.7170

Note. RFR was run at NT of 100. RFR: random forest regression; SVR: support vector regression; TS: training set; VS: validation set; NT: number of trees.

TABLE 5 Predicted salinity (dS m−1) by different algorithms for different land use types under the sample polygons defined in Figure 3a–c

Land use types

RFR SVR MLR Mean converted
ECe from EMH

readings

Mean lab‐
analyzed
soil ECeMin Mean Max Min Mean Max Min Mean Max

Alfalfa (green cropland) 1.213 4.045 11.672 0.001 16.394 32.750 0.010 2.010 8.813 3.880
(two triangles)

3.1
(one sample)

Mixed croplands
(incl. newly sown)

0.341 2.946 23.089 0.001 1.142 21.875 0.045 4.958 32.162 4.216
(14 triangles)

4.0
(25 samples)

Built‐up 0.703 3.186 16.909 0.000 8.377 32.280 0.002 1.491 33.085 N/A N/A

Long‐term fallows (incl.
abandoned croplands)

2.619 31.996 101.578 3.984 36.405 158.900 10.030 37.967 126.351 39.515
(five triangles)

38.8
(four samples)

Saline bare soil 2.582 43.650 122.270 5.240 52.113 169.890 13.885 47.182 149.120 88.929
(three triangles)

N/A

Note. RFR: random forest regression; SVR: support vector regression; MLR: multivariate linear regression.
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measured mean, 38.8–39.15 dS m−1. For the saline bare soil, all algo-

rithms predicted a salinity ranging from 43.65 to 52.11 dS m−1, lower

than the measured mean, 88.93 dS m−1. Probably, our field sampling

was not enough (only three pairs) to cover the full spectrum of the

spatial variability of salinity in this land use unit.

Salinity expressed in continuous ramp (a) and severity levels (a′)

predicted by MLR modeling using the combined Model 2 of Wu

et al. (in press), with an accuracy of 83.7% and 81.5% versus the TS

and the VS, respectively; the same meaning for (b) and (b′) predicted

by RFR, with an accuracy of 93.5% and 94.2% versus TS and VS,

respectively (Table 3); and (c) and (c′) by SVR, with an accuracy of

89.4% and 85.2% versus TS and VS, respectively (Table 4). Polygons

defined in Figure 3a–c were the sample areas of the main land use cat-

egories used for evaluating the reliability of the predicated salinity

(Table 5).
3.2.2 | Prediction reliability

Calibration by linear regression revealed that the reliability of predic-

tion was high as R2 of the RFR and SVR prediction versus TS and VS

were, respectively, 0.9349 and 0.9416 (Table 3), 0.8606 and 0.8888

(Table 2) based on EMH, or 0.8943 and 0.8525 (Table 4) based on
TABLE 6 RMSE and NRMSE of prediction by different regression algorit

Field‐measured
sample sets

RFR SVR

RMSE (dS m−1) NRMSE (%) RMSE (d

TS 5.275 6.10 9.410

VS 6.793 7.69 9.651

Note. RFR: random forest regression; SVR: support vector regression; MLR: mu
mean square error; NRMSE: normalized RMSE.
EMV. The R2 of the MLR prediction was 0.8371 and 0.8135 versus

TS and VS, respectively. Generally, all these regression algorithms

could achieve reasonable estimation, and RFR performed best.

Table 6 presents the verification results by RMSE and NRMSE,

another frequently applied indicator to evaluate the reliability. The

same as revealed by the linear regression analysis, salinity prediction

by RFR has the least RMSE and NRMSE, followed by MLR having less

NRMSE than SVR.
3.3 | Approach assessment

To use field samples as TS for classification and regression modeling is

a common procedure. Our study revealed that the buffering‐based

rasterization of samples, for example, with a buffer radius of 30–

60 m for RFR and 60 m for SVR, is an efficient procedure to use point

data as such rasterization can better preserve spatial locations and

representativeness of the sample plots.

Among the tested machine learning algorithms, RFR

outperformed SVR and generated maps with higher reliability. Unlike

RF and SVM classification, RFR and SVR can run fast, from tens of sec-

onds to several minutes on a normal personal computer depending on

the NT for RFR and on the kernel function type for SVR. One
hms

MLR

S m−1) NRMSE (%) RMSE (dS m−1) NRMSE (%)

10.29 8.208 9.09

10.52 8.280 9.19

ltivariate linear regression; TS: training set; VS: validation set; RMSE: root
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disadvantage of the machine learning algorithms is that they cannot

produce intuitive models as MLR does.

Farifteh et al. (2007) and Taghizadeh‐Mehrjardi et al. (2014) have

already predicted soil salinity using machine learning algorithms. The

tests of Farifteh et al. (2007) were carried out in very small areas

(about 5–6 ha) in the Netherlands and Hungary. Whether their

approaches were applicable to larger areas was not clear. We tested

partial least squares regression in our research site, and the accuracy

of the resulted maps was low, only 69.5–72.3% (R2 = 0.69–0.72) cor-

responding to TS of 30 and 60 m of buffering size, much lower than

our machine learning results (R2 = 0.85–0.94).

The study conducted in a remote site in Iran by Taghizadeh‐

Mehrjardi et al. (2014) seemed comparable with ours. But they used

EM38 readings to produce ECa maps by Kriging interpolation, and

these maps were then input as independent variables with others for

salinity prediction. Our concern lies in the uncertainty of their interpo-

lated ECa maps because EM38 readings were limited and the ECa in

most pixels was ‘predicted.’ In our opinion, using such uncertain ECa

as inputs to predict salinity seems irrelevant. Moreover, the algorithm

they used, regression tree, is only a part of the RFR and less predic-

tively powerful than the latter (Breiman, 2001). We believe thence

our approaches and results would be more robust.
4 | CONCLUSIONS

This study applied machine learning regression algorithms to soil salin-

ity prediction and mapping using a combined optical–radar dataset

and field measurements. The results showed that it was effective

and practical to employ thematic biophysical indicators from both

optical and radar data to achieve the objectives. The removal of vege-

tation impact on the radar backscattering coefficients increased sub-

stantially the predictivity of the radar data. Rasterization of the field

samples with buffering radius of 60 m was the most effective proce-

dure for creating the TSs.

Among the tested regression algorithms, RFR performed best with

the highest correlation coefficients and least RMSE (5.275 and

6.793 dS m−1) and NRMSE (6.10% and 7.69%) against TS and VS.

The main RMSE was produced in the strongly salinized areas such as

the saline bare soil, where more field samples will be needed in future

to improve the prediction performance. It was also noted that MLR

can predict salinity with acceptable NRMSE (<10%), and its advantage

lies in the possibility to deliver intuitive models. Hence, we concluded

that RFR and MLR are two good regression predictors of salinity and

recommended for application elsewhere.
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